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ABSTRACT

When confined between two parallel drying surfaces that are separated by a small

distance, D, a liquid close to liquid-gas coexistence becomes metastable and evaporates.

This paper focuses on this surface-induced phase transition. With mean field theory,

we describe the pertinent phases and the corresponding density profiles for a lattice

gas model. In one of the three phases, vapor films form between the liquid and the

drying surfaces. Analytical estimates and Monte Carlo simulations indicated that the

pathway to evaporation involves the concerted action of large amplitude fluctuations of

the vapor film interfaces and the formation of vapor tubes that bridge these interfaces.
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1. INTRODUCTION

When a liquid is in equilibrium with its vapor in the presence of a surface, the liquid-

gas interface is characterized in part by the angle it makes with the surface. This contact

angle, θc, is determined by the interfacial energetics through the Young-Dupré equation,

σsg − σsl = σgl cos θc, where σsl, σsg and σgl are the surface-liquid, the surface-gas and

the gas-liquid surface tensions, respectively. For a drying surface, σsl > σsg, and thus

the contact angle θc is greater than 90o. When a pair of drying surfaces are arranged in

parallel at a separation D and immersed in the liquid, the liquid between these surfaces

may evaporate. This example of a surface-induced phase transition occurs when the

grand canonical free energies of the confined liquid (Ωl ∼ pV +2Aσsl) and the confined

gas (Ωg ∼ pgV + 2Aσsg) are comparable [1, 2]. Here, p is the bulk pressure and pg is

the pressure of the coexisting vapor, and the volume of the confined region is V =AD.

The critical separation at which the confined vapor becomes thermodynamically

favorable is then given by

Dc ∼ −
2σgl cos θc
(p− pg)

= −
2σgl cos θc
ρl∆µ

. (1)

The second equality is obtained for an incompressible fluid by approximating p− pg by

ρl∆µ, where ρl is the liquid density, and ∆µ is the difference of the chemical potential

of the bulk liquid from liquid-gas coexistence. This relationship is analogous to the

Kelvin equation for capillary condensation. When σgl is not small, but ∆µ is small,

Dc can be a very large length. For instance, water at normal conditions is close to

liquid-gas coexistence. The resulting ∆µ is so small that Dc ∼ 103Å in that case.

This paper is concerned with the formation of interfaces and the kinetic pathway of

this surface-induced transition.

In experiments measuring forces between two hydrophobic surfaces in water [3, 4],

at separations of about 100 Å, the two surfaces jump into contact. Additionally, the

forces exhibit hysteresis in the inward and outward going measurements, suggesting

possible metastabilities associated with first-order phase transitions. In analogous ex-
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periments [5], phase separations of confined binary (αβ) liquid mixture have also been

investigated. The solute species β is sparingly soluble in liquid α. Two surfaces that

favors the β species are allowed to approach in the slightly-undersaturated solution.

A sudden inward jump of the surfaces and condensation of the β-phase between the

surfaces are observed.

Yaminsky et al. suggested that the mechanism for the surface-induced evaporation

involves the formation of a vapor tube across the two surfaces [6]. When the vapor tube

grows to a critical size, the metastable liquid loses stability and evaporates. However,

from the free energy for nucleating a critical vapor tube4, one would predict that the

time scale for evaporation is far too long to observe in any physically accessible time.

Yet, as described in Sec. 3, the evaporation can be observed during the course of a

relatively short Monte Carlo trajectory. Therefore, the pathway to evaporation involves

something different than simply tube formation. Before focusing on the pathway, it

is useful to begin by considering the interfacial phase diagram associated with the

phenomenon.

2. MEAN FIELD THEORY OF LATTICE GAS MODEL FOR CONFINED FLUIDS

The lattice gas Hamiltonian is given by

H[{ni}] = −ε
∑
〈ij〉

ninj − εs

∑
i∈ surface

ni − µ
∑
i

ni, (2)

where ε is the nearest neighbor interaction, εs is the surface-particle interaction, µ is

the chemical potential, and ni(= 0, 1) is the occupation number for the ith cell in a

cubic lattice. Confining surfaces bound the system at z = 0 and z = D + 1. The first

sum runs over all nearest neighbor pairs. The second sum runs over all sites next to

the surfaces. Phase behavior of lattice gas models in the presence of surfaces has been

studied within mean field approximation [7-9], and by simulations [10-13]. Here, we

4From standard surface thermodynamics, the free energy to form a vapor tube of radius r is

2πrDσgl + 2πr2(σsg − σsl). The free energy for forming a vapor tube of critical size is then

πD2σgl/2 cos θc (∼ 180kBT for D = 10Å, σlg =70 dyne cm−1, θc = 180o and T = 298K).
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are concerned with the phase diagram in terms of the bulk and the surface fields.

Below the critical temperature, Tc, the system in bulk (i.e., without surfaces) phase

separates into two phases with average densities ρl and ρg (= 1− ρl) at µcoex = −ζε/2,

where ζ is the number of nearest neighbors. In the presence of confining surfaces, the

phase coexistence is shifted to

∆µ = µ− µcoex = (ζ⊥ε− 2εs)/D, (3)

where ζ⊥ is the number of nearest neighbor in the adjacent layer (for cubic lattice,

ζ = 6, ζ⊥ = 1). This relationship is the low temperature approximation to Eq. (1). It

describes a phase transition that occurs when the liquid is in contact with the drying

surfaces.

Alternatively, an evaporation transition can occur from a phase of the confined

fluid where a vapor film lies between the liquid and each drying surface. The vapor

film is formed from a predrying transition [8, 14]. It occurs when the surface-particle

attraction is so small that the attraction from the bulk effectively pushes the particle

away from the surface [15], leaving a region of low occupancy next to the surface. The

density away from the surface rises to its bulk liquid density ρl at the given (µ, ε). In

the low temperature limit, the predrying line is given by

(ζ⊥ε− 2εs) = 2∆µ− ε(2ρl − 1). (4)

Because of the discreteness of the underlying lattice, the interface between the low

density and the high density phases in this model undergoes a roughening transition at

temperature TR [16]. This roughening transition is not relevant to liquid-gas interfaces

in real fluids, and in all our considerations, TR < T < Tc.

In the vapor-film phase, as the intersurface separation decreases, the stability gained

by the liquid film cannot support the liquid-gas interfaces, and the system becomes

metastable with respect to the gas state. From the same considerations that lead to

Eq. (3), evaporation of the vapor film is predicted to occur when ∆µ = 2σgl/(D - 2`) [2],

where ` is the average thickness of the vapor film. At low temperature where the liquid-
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gas interface is sharp and fluctuations can be neglected, the shift in coexistence can be

approximated by

∆µ = ε/(D − 2). (5)

The above-mentioned phase transitions can be predicted on the mean field level.

The free energy of the lattice gas model is

F = −kBT log
∑
{ni}

exp(−βH[{ni}]), (6)

where kB is Boltzmann’s constant and β = 1/kBT . Assuming translational invariance

in the x-y plane, the mean field approximation for the free energy and the average

density profile, 〈nz〉, can be obtained by minimizing the functional, [7-9]

F [〈nz〉]/A =
−ε(ζ − 2ζ⊥)

2

D∑
z=1

〈nz〉
2 − ζ⊥ε

D−1∑
z=1

〈nz〉〈nz+1〉 − εs

∑
z=1,D

〈nz〉 − µ
D∑
z=1

〈nz〉

+kBT
D∑
z=1

[〈nz〉 log〈nz〉 + (1− 〈nz〉) log(1− 〈nz〉)] . (7)

The phase diagram for βε = 1.652 is calculated numerically and shown in Fig. 1.

The symbols (2, 3 and 4) denote the locations at which coexistence occurs. The

triple point, denoted by •, is where the three phases coexist. The dotted lines are the

low temperature limit given by Eqs.(3)-(5). In this limit, a triple point is located at

∆µ = ε/(D − 2), (ζ⊥ε− 2εs) = Dε/(D − 2).

As interfacial profiles are more diffuse at high temperature and small ∆µ, the agree-

ment with the low temperature predictions becomes less satisfactory as we raise the

temperature. This fact is illustrated in Fig. 2 where the phase diagram for βε=0.976 is

shown. Indeed, the deviation is more pronounced as ∆µ decreases, and the vapor-film

state is more stable than predicted from sharp interfaces. The predrying line in Fig. 2

ends at a critical point. The critical behavior at βε > βcε (= 4/ζ classically) originates

from the mean field equation satisfied by the density at z = 1, D,

2〈nz〉 − 1 = tanh

[
βε(ζ − 2ζ⊥)

4
(2〈nz〉 − 1) + βεζ⊥〈nz′ 〉+ βεs + βµ

]
, (8)

where z′=2, D-1 for z=1, D, respectively. When βε < 4/(ζ − 2ζ⊥), as the system
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approaches the critical point along the predrying line, the jump in surface densities

between the two states vanishes. The critical point moves towards the triple point as

temperature increases. When the two points merge, the system can be found in only

two thermodynamically stable states, namely the gas state and the high density state.

The predrying transition can only be observed as a transition between metastable states

in the gas region.

3. THE PATHWAY TO EVAPORATION

We now turn to the dynamics of the confinement induced evaporation. Since the

vapor-film state contains two liquid-gas interfaces, the dynamics may involve interfacial

capillary wave fluctuations [17, 18]. These fluctuations are suppressed in the presence

of a large bulk field, ∆µ. For systems close to coexistence, however, these fluctuations

cannot be neglected. Due to the long wavelength nature of capillary waves, one must

account for large system size.

Figure 3 shows a cross section of a nascent configuration in the Monte Carlo simula-

tion of a confined lattice gas. The lateral dimension of the L × L × D system is much

longer than the separation between the confining surfaces (L = 512 and D = 12). Cap-

illary waves are evident in the figure. Where the two interfaces approach one another,

vapor tubes may bridge the interfaces. One such tube is seen in Fig. 3. The boundary

conditions in the lateral direction are defined to mimic a liquid reservoir outside the

confined region (ni = 1 at the boundary in the lateral direction). These fixed boundary

conditions pin the interfaces at the edges.

To examine the equilibrium phase transition properties [10-13], others have simu-

lated lattice gas models of confined fluids in slit geometries, as we have done. But in

these other works, the lateral size, L, has not been much larger than the separation be-

tween surfaces, D, and periodic boundary conditions have been applied parallel to the

surfaces. The lateral size and boundary conditions are, however, crucial in determining

the dynamics of the system, as we discuss now.
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The lattice-gas parameters used in our simulation are βε = 1.653, βεs = 0.01,

β∆µ = 0.0002589, and a = 2.2 Å. These parameters are chosen such that the cor-

responding lattice gas system exhibits high surface tension, close proximity to vapor-

liquid coexistence, and high incompressibility. With the given parameters, the system

is located in the gas region of the phase diagram, indicated by ⊗ in Fig. 1. Using

Glauber dynamics, and the liquid phase as initial conditions, the time evolution of the

grand canonical lattice gas system to its ultimately stable gas phase is followed.

The configuration illustrated in Fig. 1 is obtained after 10, 000 passes (1 pass corre-

sponds to L2D single-flip trials). Vapor films are clearly seen between the surfaces and

the liquid. Predrying transition has thus occurred. For L = 256 and 512, these films

develop within 1,000 passes. In contrast, a system with L = 16 remains in the confined

liquid phase after 20,000 passes. Evidently, the formation of the vapor films is driven

by the growth of capillary wave fluctuations. In Fig. 4, the average density profiles for

L = 256 and 512 are shown. The average vapor-film thickness ` is determined by the

relation [18]:

2ρg` + ρl(D − 2`) =
1

L2

∑
i

ni. (9)

The profile for L = 512 has a larger interfacial thickness (` = 1.97) than for L = 256

(` = 1.80). The difference is in accord with the estimation of film thickness from the

thickness of a free interface (i.e., without surfaces), ∼
√

lnL/2πσgl [19].

If a vapor tube bridging the interfaces grows to a critical size, the system approaches

its equilibrium gas state with an expanding vapor tube [20]. Thus, a plausible transition

state for the evaporation coincides with two close together vapor films connected by

critically large tubes. Figure 5 shows a schematic interfacial configuration at this

transition state. The free energy associated the pictured fluctuation is approximately

∆F (r, `) = 2[πσgl(`− `)
2/2] + (2πσglrw − 2πσglr

2). (10)

The first term corresponds to the free energy for bringing the two interfaces to a

distance ` away from the surfaces. Here, we have assumed that the two interfaces are
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non-interacting. The second term is the free energy for forming a tube of radius r and

length w (= D − 2`). At the saddle point of ∆F , the critical size of the vapor tube

and the associated free energy barrier height are given by

2rc = wc = (D − 2`)/3, and ∆F ‡ = πσgl(D − 2`)2/6. (11a)

When `� D/2, the evaporation path is an activation-controlled process. The proba-

bility of reaching the transition state is given by

P ‡ ∼ L2 exp(−β∆F ‡). (11b)

For systems with L = 512, with ` =1.97 after 10,000 passes, Eqs.(11) predicts wc ∼ 2.7

and P ‡ ∼ 10−5. For L = 256, with ` =1.80 after 70,000 passes, P ‡ ∼ 10−6.

The pathway for evaporation is very different for systems with periodic boundary

conditions. For any such finite system, the long-time nature of the interfacial dy-

namics should correspond to quasi-one-dimensional diffusion [21(a)]. In this situation,

the effective interface mobility is enhanced for small L [14, 21, 22]. With periodic

boundary conditions and L = 16, we find that the confined system evaporates within

10,000 passes. In this case, the interfaces fluctuate freely into the thinning of the liquid

film, and the decay of metastable state is diffusion-driven.

Assuming the occurrence of evaporation obey Poisson statistics, the mean lifetime

of the metastable state should be ∼ 1/P ‡. The effects of transient vapor tubes [23] will

lower ∆F ‡ and thus increase 1/P ‡ from what is given by Eqs. (11). In particular, the

presence of a bridging vapor tube enhance the fluctuations that bring the interfaces close

together. The probability of forming a single column vapor tube across two interfaces

separated by w, P (1)
tube(w) ∝ exp[−βε(4w − 2)/2]. Decreasing interfacial separation

therefore favors tube formation. This cooperative effect should be important when

the system is close to the transition state. To take account of the film thickness which

varies across the x-y direction, the system can be divided into columns of size ξ2, where

ξ is of the order of the bulk correlation length [18]. Let Pc(w, t;L) be the probability

that the column c having an average film thickness w =
∑
i∈c ni/ξ

2 at time t. The

8



probability of observing a narrow tube in the system at time t is given roughly by

Pb(t;L) ∼ L2
∑
w

Pc(w, t;L)P
(1)
tube(w). (12)

With Pc(w, t;L) calculated from simulations, we find Pb(104; 512) ∼ 10−3. For L=256,

Pb(104; 256) ∼ 5× 10−5 and Pb(7× 104; 256) ∼ 5× 10−4.

The evaporation process captured in our simulations is in accord with the above

analysis. In the several runs we have performed for L = 512, the systems evaporate in

10,000 to 20,000 passes. The thin liquid film bounded by the two liquid-gas interfaces

has an average thickness w of about 8 lattice spacings. The film thickness fluctuates

due to thermal excursions of the interfaces. Just before evaporation, the two interfaces

are locally separated by about 3 lattice spacings and are bridged by a tube that then

expands. The system with L = 256 remains in the metastable state up to 70,000 passes.

This lengthening of evaporation time, from 10-20,000 passes to over 70,000 passes, is

due to the diminished amplitude of capillary waves that occur with the smaller system.

Capillary wave fluctuations can also be suppressed by placing attractive sites on

the surfaces. We have performed simulations on the inhomogeneous surfaces [20]. The

simulation time required to observe evaporation in these systems is longer than for

systems with uniform surfaces. Interfacial growth and fluctuations are hindered due

to occasional pinning of the induced interfaces at the attractive sites. The interaction

between the two liquid-gas interfaces arises from bridging vapor tubes should be reduced

according to Eq. (12). Additionally, the barrier height to reach the transition state

increases according to Eq. (11a). The surface inhomogeneity may also reduce the

prefactor in the expression for P ‡ in Eq. (11b).
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FIGURE CAPTIONS

Fig. 1. The mean field phase diagram as a function of the bulk and surface field

at βε=1.652. Three phases are identified. The dotted lines are estimates from

low temperature approximations given by Eqs. (3)-(5). The symbol ⊗ locates the

approximate position of the lattice-gas systems we simulated. Inset pictures are

schematic depictions of the corresponding density profiles, 〈nz〉. From Eq. (3), the

slope of the line of coexistence between the confined liquid and the gas states varies

with the surface separation as −D. From Eq. (5), the distance between the line of

vapor film-gas coexistence and the line for ∆µ = 0 varies with the surface separation

as 1/(D − 2). As D → ∞, the phase boundaries for the gas state merge with the

line for ∆µ = 0.

Fig. 2. The mean field phase diagram as a function of the bulk and surface field at

βε = 0.976. The line of coexistence between the liquid and the vapor-film state ends

at a critical point at about ∆µ/2 = 0.21 and (ζ⊥ε− 2ε)/4 = −0.42.

Fig. 3. Cross section of the L × L × D lattice gas system (L = 512 and D = 12) at

about 10,000 passes. The straight lines at the top and the bottom represent the dry-

ing surfaces. Cells are black when occupied, and white when empty. The particular

vapor tube seen here did not grow to its critical size, but instead disappeared at a

later simulation step. The vapor tubes are not confined to the center of the system.

Fig. 4. Density Profiles 〈nz〉 from Monte Carlo simulations on lattice gas systems

(D = 12, L = 256, 512). The smoothed curves are symmetrized averages over 〈nz〉

at 10 simulation times separated by 100 passes, i.e., at t− 900, t− 800,. . ., t− 100,

t passes. The bars, unsymmetrized, show the range of density fluctuations over this

time interval.

Fig. 5. Schematic depiction of the transition state. The critical vapor tube is of

diameter 2r ∼ w [Eq. (11a)].
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